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1 Overview

The discovery of dark matter is of fundamental importance tocosmology, astrophysics, and elementary particle
physics. A broad range of observations from the rotation speed of stars in ordinary galaxies to the gravitational lensing
of superclusters tell us that 80–90% of the matter in the universe is in some new form, different from ordinary parti-
cles, that does not emit or absorb light. Cosmological observations, especially the Wilkinson Microwave Anisotropy
Probe of the cosmic microwave background radiation, have provided spectacular confirmation of the astrophysical
evidence. The resulting picture, the so-called “Standard Cosmology,” finds that a quarter of the energy density of the
universe is dark matter and most of the remainder is dark energy. A basic foundation of the model, Big Bang Nucle-
osynthesis (BBN), tells us that at most about 5% is made of ordinary matter, orbaryons. The solution to this “dark
matter problem” may therefore lie in the existence of some new form of non-baryonic matter. With ideas on these
new forms coming from elementary particle physics, the solution is likely to have broad and profound implications
for cosmology, astrophysics, and fundamental interactions. While non-baryonic dark matter is a key component of the
cosmos and the most abundant form of matter in the Universe, so far it has revealed itself only through gravitational
effects—determining its nature is one of the greatest scientific issues of our time.

Many potential new forms of matter that lie beyond the Standard Model of strong and electroweak interactions have
been suggested as dark matter candidates, but none has yet been produced in the laboratory. One possibility is that
the dark matter is comprised of Weakly Interacting Massive Particles, orWIMPs, that were produced moments after
the Big Bang from collisions of ordinary matter.WIMPs refer to a general class of particles characterized primarily
by a mass and annihilation cross section that would allow them to fall out of chemical and thermal equilibrium in the
early universe at the dark matter density. Several extensions to the Standard Model lead toWIMP candidates. One
that has received much attention is Supersymmetry (SUSY), which extends the Standard Model to include a new set of
particles and interactions that solves the gauge hierarchyproblem, leads to a unification of the coupling constants, and
is required by string theory. The lightest neutralSUSYparticle, or neutralino, is thought to be stable and is a natural
dark matter candidate. Intriguingly, whenSUSY was first developed it was in no way motivated by the existenceof
dark matter. This connection could be a mere coincidence—ora crucial hint thatSUSY is responsible for dark matter.

The possibility that a new class of fundamental particles could be responsible for the dark matter makes the search
for WIMPs in the galactic halo a very high scientific priority. In resolving this puzzle, it is intrinsically important to
carefully search the parameter space defined by aWIMP signal in the galactic halo using terrestrial detectors. A direct
detection of dark matter in the halo would be the most definitive way to determine thatWIMPs make up the the missing
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mass. As we discuss further below, the study ofWIMP candidates in accelerator experiments is critical in determining
the relic density of these particles. The indirect detection of astrophysical signals due toWIMP-WIMP self-annihilation
may also provide important clues but in many cases may be difficult to unambiguously separate from more mundane
astrophysical sources. That leaves direct detection as playing a central role in establishing the presence ofWIMPs in
the universe today. Given both the technical challenge and fundamental importance of directWIMP detection, it is vital
to have the means to confirm a detection in more than one type ofdetector. In addition to giving a critical cross check
on systematic errors that could fake a signal, detection ofWIMPs in multiple nuclei will yield further information about
theWIMP mass and couplings. Eventually, ifWIMPs are discovered, then the ultimate cross check will be confirming
their galactic origin by observing secondary signatures related to the motion of the earth and solar system.

Many accelerator-based experiments have searched forSUSY’s predictions. Although no direct evidence has yet
been found, the unexplored landscape on the energy frontieris still rich with candidates. Indeed,SUSY particles
are the prime quarry of the large experiments at Fermilab’s Tevatron andCERN’s Large Hadron Collider (LHC), and
the laboratory production ofWIMP candidates would be a great help in solving the dark matter problem. However,
accelerator experiments alone cannot offer a solution because it is impossible to determine whether the particles are
sufficiently long-lived. Ultimately, only astrophysical observations can determine whetherWIMPs exist in nature.

Astroparticle physics experiments worldwide are activelysearching forWIMPs under the hypothesis that they make up
the missing mass in the Galaxy. The two main approaches are direct detection ofWIMP-nucleus scattering in laboratory
experiments and indirect detection through the observation of WIMP-WIMP annihilation products. An astrophysical
discovery ofWIMPs would be a landmark event for cosmology and give new information on fundamental particle
physics that may otherwise be inaccessible even to theLHC. In fact, if SUSYeludes theLHC, astrophysical evidence
for new particles could provide the key guidance for the planned International Linear Collider (ILC). A solution to the
dark matter puzzle will also address lingering questions about our understanding of gravity.

US scientists are in a world-leading position in direct detection, by having pioneered the development and deployment
of several of the best technologies, and by engaging in an activeR&D program that promises to continue this leadership.
The detection of dark matter is an experimental challenge that requires the development of sophisticated detectors,
suppression of radioactive contamination, and—most relevant to this report—siting in deep underground laboratories
to shield from cosmic-ray-induced backgrounds. By building the world’s premier deep laboratory, together with
bringing the ongoingR&D efforts to fruition, theUS will be in a very advantageous position internationally to attract
and lead the major experiments in this field.

A number of recent reports have highlighted the importance of dark matter searches. TwoNRC reports, “Connecting
Quarks with the Cosmos,” chaired by M. Turner [1], and “Neutrinos and Beyond,” chaired by B. Barish [2]; and
the HEPAP report “The Quantum Universe,” chaired by P. Drell [3], havepointed out the high scientific priority of
this enterprise. In reviewing these findings, theOSTPInteragency Working Group’s “Physics of the Universe” report
directed that in the area of dark matter “NSFandDOEwill work together to identify a core suite of physics experiments.
As stated in the report, this work will include research and development needs for specific experiments, associated
technology needs, physical specifications, and preliminary cost estimates” [4]. The central role that dark matter plays
at the intersection of cosmology and fundamental physics was highlighted most recently in the NRC report “Revealing
the Hidden Nature of Space and Time: Charting the Course for Elementary Particle Physics,” chaired by H. Schapiro
and S. Dawson [5]. In that report, the search for dark matter was included among the top three priorities of the long
rangeUS HEPprogram. These stated priorities and directives in these various reports are well-aligned with theDUSEL
science program.

In Section 2 of this report we describe the cosmological and astrophysical evidence for dark matter and the deep
connection to particle physics suggested by theWIMP hypothesis. A concordant picture of dark matter will require
information from both astrophysical observations and laboratory measurements. On the one hand, accelerator exper-
iments alone cannot establish a solution to the dark matter problem because of the question of particle stability. On
the other hand, an astrophysical detection does not constrain the particle physics parameters well enough to determine
their relic density.

In Section 3 we define the basic challenge of the direct detection of WIMPs, which is based on elastic scattering be-
tweenWIMPs in the halo and atomic nuclei in a terrestrial detector. We examine there the general strategy, including
the need to mitigate background sources by enhancing the sensitivity for nuclear recoil events relative to the predom-
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inant electromagnetic backgrounds. We also discuss methods for comparing the sensitivity of different approaches,
interpreting results within the framework of particle physics models, and conclude that section with a brief description
of the present status ofWIMP searches.

Following the general discussion of direct searches, we give an overview in Section 4 of indirect astrophysical methods
to detectWIMPs. These methods are based on looking forWIMP annihilation products including gamma rays, neutri-
nos, and other particle species. The sources are based on enhanced concentrations ofWIMPs that arise from scattering
and clumping of the particles in astrophysical objects. Depending on the nature of the source and the annihilation
channel, the sources range from broad-band to monoenergetic and include both directional and diffuse sources. While
there are several interesting hints, the challenge remainsto establish that these are not due to other astrophysical
processes.

In Section 5, we take up in more detail the particle physics behind WIMP candidates. With the anticipated turn-on of
theLHC at CERNand the high priority of theILC to theUS High Energy Physics program, it is particularly timely to
examine the complementarity of the accelerator- and non-accelerator-based approaches to answering questions about
the nature of both dark matter and fundamental interactions. Clearly, the laboratory production ofWIMP candidates
could provide important guidance to the astrophysical searches. By the same token, astrophysical measurements
of WIMP properties can help to constrain physics beyond the Standard Model and provide knowledge that would
otherwise be difficult to obtain at accelerators during a similar time frame.

The multi-decade scientific program atDUSEL will include dark matter searches at the ton-scale and beyond, with
ultra-clean ultra-sensitive detectors. In this context, we examine in Section 6 some of the other physics that could
also be pursued in combination with dark matter instruments. Specifically, we look at the related requirements of
double-beta-decay experiments, which have in common the need for low-radioactive background and excellent energy
resolution. Germanium, xenon and tellurium all have double-beta-decay nuclides and are being used as detection
media in both fields. In Section 6, we also examine the prospects for detecting neutrinos from supernovae. These
neutrinos, with energy in the 10-MeV range, would exhibit scattering rates in nuclei that are enhanced by coherent
scattering and will give recoils above dark matter detection thresholds.

In the latter part of the report we focus on the specific experiments and technical requirements in Sections 7 and 8,
respectively. The status of several candidate experimentsfor DUSEL are briefly reviewed, looking at both current
status of progenitors and plans for the future. Infrastructure requirements are treated in subsections on depth, materials
handling, and space and facility needs.

The report concludes with sections on the international context regarding experiments and laboratories outside theUS,
and our assessment of the long-range dark matter road map.

2 WIMP Dark Matter: Cosmology, Astrophysics, and Particle Physics

The evidence for dark matter is overwhelming, and arises from a wide range of self-consistent astrophysical and
cosmological data. Dark matter appears to be ubiquitous in spiral galaxies, dating to observations from the 1970’s by
Rubin and Ford [6]. It is evident there in so-called “flat” rotation curves, in which the rotation speed of stars and gas
as a function of galactic radius is larger than can be attributed to the centripetal force exerted by the luminous mass.

On larger scales, studies of clusters of galaxies show even larger fractions of dark matter relative to stars and inter-
galactic gas. Indeed, it was Zwicky’s observation of the Coma cluster in 1933 that provided the first evidence for
a missing-mass problem [7]. Independent studies of virial speeds of cluster-bound galaxies, gravitational-bound X-
ray-emitting gas, and gravitational lensing of backgroundobjects by the cluster all reveal similar amounts of dark
matter. A striking example, shown in Figure 1, is the gravitational lensing of a background galaxy into multiple im-
ages by a cluster in the foreground [8]. The mass of the cluster derived from its luminosity is insufficient to account
for the strength of the lens, as indicated by the fit to a smoothdistribution of matter underlying the galaxies, them-
selves [9]. The mean matter density of the Universe attributed to measurements of X-rays emitted from the gas finds
thatΩm = 0.26+0.06

−0.04 [10] in units of critical density.

On cosmological scales, detailed mapping of the anisotropyof the cosmic microwave background (CMB) and obser-
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Figure 1: Left: The foreground cluster of galaxies gravitationally lenses the blue background galaxy into multiple images [8].
Right: A parametric inversion for the strength and shape of the lens shows a smooth background component not accounted for by
the mass of the luminous objects [9].

vations of high-redshift supernovae and the large-scale distribution of galaxies have led to a concordance model of
cosmology, which is consistent with the mean matter densityof the universe inferred from clusters and the primor-
dial light-element abundances fromBBN. In this very successful model, the universe is made of∼4% baryons which
constitute the ordinary matter,∼23% nonbaryonic dark matter and∼73% dark energy (see, for example Refs. [11]
or [12], for fits to cosmological parameters). From these observations we also know that the dark matter must have
been nonrelativistic at the time that the energy density of radiation and matter were equal, and is thus generically re-
ferred to as “cold” dark matter. Modifications to gravity that can explain all the observations that indicate dark matter
seem unlikely because the observations cover such a large distance scale.

Thermal production ofWIMPs in the early Universe, followed by freeze-out, provides a natural mechanism for creation
of dark matter with the observed relic density [13, 14]. Thisis a straight-forward extension of the standardBBN
scenario, which successfully predicts the abundance of thelight elements. The time and temperature at which the
WIMPs decouple from ordinary matter is determined by their crosssection for annihilation with themselves or other
particles in the hot plasma, and the abundance at the decoupling time is determined by the temperature and the mass.
Therefore, the relic density of dark matter today would depend principally on theWIMP’s mass and annihilation cross
section. Also, simple dimensional arguments relating the mass and cross section, along with the constraint that the
relic density be equal to the dark matter density, naturallysatisfy the criterion that the particles are non-relativistic at
decoupling. Purely cosmological considerations lead to the conclusion thatWIMPs should interact with a cross section
similar to that of the Weak Interaction.

Other scenarios for particle cold dark matter exist, such asthe very light axions [15] or the very heavyWIMPzillas [16].
Axions arise as a solution to the strong CP problem and arise in the early universe as a Goldstone boson from the
QCD phase transition. LikeWIMPs, they are also the subject of active dark matter search experiments but require a
different set of experimental techniques (which are carried out in surface laboratories). Unlike axions andWIMPzillas,
WIMPsare produced thermally and represent a generic class of BigBang relic particles that are particularly interesting
because of the convergence of independent arguments from cosmology and particle physics. That is, with the required
ranges of mass and cross section characteristic of the Weak scale,WIMPs occur precisely where we expect to find
physics beyond the Standard Model. Specifically, new physics appears to be needed at the Weak scale to solve the
mass hierarchy problem. Namely, that precision electroweak data constrain the Higgs mass in the Standard Model to
be less than 193 GeV/c2 at 95% C.L. [17] in spite of the radiative corrections that tend to drive it to the much higher
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scale of Grand Unified Theories (GUTs). These corrections tend to be cancelled in Supersymmetry, which naturally
predicts that the Lightest Supersymmetric Partner (LSP) is stable and interacts at roughly the Weak-Interaction rate.
More recently, compact extra dimensions have been proposedto solve this problem, also leading toWIMP candidates.
The theoretical parameter space is very unconstrained so any empirical data that restrict it, both from dark matter
detection and accelerator-based methods, are extremely valuable

If WIMPs are indeed the dark matter, their local density in the galactic halo inferred from the Milky Way’s gravitational
potential may allow them to be detected via elastic scattering from atomic nuclei in a suitable terrestrial target [18].
Owing to theWIMP-nucleus kinematics for halo-bound particles, the energy transferred to the recoiling nucleus is on
the order of 10 keV. The expected rate ofWIMP interactions, which is currently limited by observations to less than
0.1 events/kg/day [23], tends to be exceeded in this energy range by ambient radiation from radioisotopes and cosmic
rays, and so sensitive high-radiopurity detectors and deepunderground sites are required.
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Figure 2: Plots of the elastic scattering cross section for spin-independent couplings versus WIMP mass. (a) The left panel
shows the leading experimental results in which the solid curves represent experimental upper limits from the ZEPLIN-Isingle-
phase liquid xenon detector (dark green) [19], the EDELWEISS thermal and ionization cryogenic detectors (dark red) [20], the
CRESST thermal and scintillation cryogenic detectors (cyan) [21], the WARP two-phase liquid argon detector (magenta;55 keV
threshold) [22], and the CDMS-II athermal-phonons and ionization detectors (black) [23], in all cases assuming the standard halo
model [24] and nuclear-mass-numberA2 scaling. The contested DAMA annual-modulation claim [25] is shown by the green
region. The yellow and grey regions represent unconstrained Minimal Supersymmetric Standard Model (MSSM) predictions for
low-mass WIMPs that result from relaxing the GUT-scale unification of gaugino masses [27]. (b) The right panel displays abroad
range of models. The most unconstrained MSSM predictions are indicated by the large grey region [26]. Models within the minimal
supergravity (mSUGRA) framework are shown in dark green [28], magenta [29] and pink [30]; the light blue region is from relaxing
the constraint imposed by the SUSY interpretation of the muon “g − 2” anomalous magnetic moment measurement [28]. More
specific predictions are given by split Supersymmetry models shown by blue circles and crosses (for positive and negative values of
theµ parameter, respectively) [31] and red circles [32]. The setof representative post-LEP LHC-benchmark models are shownby
black crosses [33]. Experimental projections are shown as black-dashed curves and are representative of the sensitivity of next- and
next-next-generation searches with detector masses in therange from several tens of kilograms up to the ton scale. The CDMS-II
limit is shown again as a solid black curve for reference withthe left panel.

Figure 2 illustrates the common landscape of directWIMP searches and the theoretical parameter space in plots of the
WIMP-nucleon cross section versusWIMP mass. The experimental bounds are represented by the U-shaped curves,
above which cross sections are ruled out for a given experiment. Theoretical models that are constrained by the
required relic density and all known accelerator bounds aredifferentiated by alternative theoretical ideas. In some of
the theoretical cases, bounded regions indicate the remaining allowed parameter space. In other cases, the model is
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fully specified and serves as a so-called benchmark, which istypical of a given class of models and provides for a more
direct sensitivity comparison among different approaches, e.g., astrophysical searches or accelerator experiments. As
is evident in the figure, some models of interest are already being constrained by direct detection methods.

In addition to the direct searches forWIMP dark matter,WIMPs are being sought by indirect means by looking for
WIMP annihilation products. SinceWIMPs would scatter and lose energy in astrophysical objects such as the Earth,
Sun and in the galactic center, the number density could become high enough to detect annihilation or subsequent
decay products such as neutrinos, gamma rays or charged particles. We describe the influence of these methods in
Section 4.

3 Direct Detection of WIMPs

WIMP-search experiments seek to measure the interactions of dark matter particles bound in our galactic halo with
the atomic nuclei of detector target materials on Earth. Thecalculation of the rate in terrestrial detectors depends
on theWIMPs velocity distribution and density in the galaxy, theWIMP mass and elastic-scattering cross section on
nucleons, and the nuclear structure of the target nuclei. Unfortunately, the relic density ofWIMPs provides only a
loose constraint on the scattering cross section because the relic density depends on the processes through which
the particles annihilate. In the well-studied example ofSUSY, model-dependent co-annihilation channels prevent the
making of a simple crossing-symmetry argument to relate thedensity and the scattering rate [14]. Indeed,SUSY-based
calculations for neutralinos show at least five orders of magnitude variation in the nucleon coupling, and can even
vanish in finely-tuned cases. Covering the bulk of theSUSY parameter space forWIMPs will require an increase in
sensitivity from the current rate limits of∼0.1 event/kg/d to less than 1 event/ton/year, demanding increases in detector
mass and exposure, and reduction in and/or improved rejection of radioactive and cosmogenic backgrounds.

Given the measured properties of the Milky Way galaxy and fairly generic assumptions about the spatial and velocity
distribution of its dark matter halo, the spectrum ofWIMP energy depositions in a detector can be calculated in terms
of the unknownWIMP mass and total cross section for nuclear scattering. Because theWIMPs must be highly non-
relativistic if they are to remain trapped in our galaxy, theshape of the spectrum has almost no dependence on the
detailed particle physics model. As discussed in [24], the differential rate takes the form

dN

dEr

=
σ0ρχ

2µ2mχ

F 2(q)

∫ vesc

vmin

f(v)

v
dv, (1)

whereρχ is the localWIMP density,µ is theWIMP-nucleus reduced massmχmN/(mχ + mN ) (assuming a target
nucleus massmN , andWIMP massmχ), and the integral takes account of the velocity distribution f(v) of WIMPs
in the halo. The termvmin is the minimumWIMP velocity able to generate a recoil energy ofEr, andvesc is the
galactic escape velocity.F 2(q) is the nuclear form factor as a function of the momentum transfer q andσ0 is the total
WIMP-nucleus interaction cross section.

The astrophysical uncertainties in Equation 1 are contained in ρχ andf(v), which can be estimated by comparing
our galaxy’s measured rotation curve to dark matter halo models. Simple models of galactic structure indicate that
the particles in the halo should be relaxed into a Maxwell-Boltzmann distribution with anRMS velocity related to
the maximum velocity in the rotation curve. In the Milky Way,the value of theRMS velocity is estimated to be
vRMS ∼220 km/s. This will be assumed below in comparing direct detection experiments. However, the velocity
structure of the dark halo may be more complex than a simple Maxwell-Boltzmann distribution. Current understanding
of structure formation posits that a dark halo of galactic dimensions is built hierarchically from the merging of smaller
dark halos. In the central parts of the galaxy, where many small halos have converged, the short orbital times and
the strong tidal forces blend the halos together into a relaxed structure with a Maxwell-Boltzmann distribution. In the
outer parts of the galaxy, where the orbital times are long (several Gyr), small halos are still falling into the galaxy at
present. Matter is pulled out of the small halos by tidal forces and is redistributed into long arms in front and behind
them. The capturing of a multitude of small halos renders theouter galaxy a crisscross of tidal streams. The crucial
question for estimating direct detection rates is if the solar system lies in the outer or the inner part of the galactic halo,
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i.e. where the halo velocity distribution is Maxwell-Boltzmann or where it is not. Recent data on the Sagittarius dwarf
galaxy show that it may be one the “small halos” still fallinginto our Milky Way, and one of its tidal arms may pass
very close, if not even across, the solar system [34]. The amount of matter in the Sagittarius arm seems however to be
only a fraction of the local dark matter density [35, 36]. Theoretical calculations using N-body simulations and semi-
analytic evaluations of the small halo tidal disruption rate are still too controversial to answer the question of how far
from the galactic center small halos are well merged [37, 38]. The discovery ofWIMPs in direct detection experiments
and the subsequent measurement of theWIMP velocity distribution by means of directional detectors seems to be a
primary route to provide an answer and inspire theoretical investigations.

The local dark matter densityρχ has significant uncertainty, since the local rotation velocity only constrains the total
mass inside our solar system’s radius while the matter distribution in the halo is not well-constrained by empirical
data [39]. For example, deviations of the dark halo from a spherical shape to a flattened spheroid can produce an
increase of the estimated local dark matter density from 0.3to 2 GeV/c2/cm3 [40]. For the purpose of comparing the
sensitivity of different dark matter experiments, it is conventional to use the value quoted by the Particle Data Group,
ρχ=0.3 GeV/c2/cm3 [41], which is known to within a factor of two.

Integrating equation 1 over the sensitive recoil-energy range of the detector gives the expected rate for a calorimetric
detector. Since the spectrum is featureless, using secondary signatures to distinguish aWIMP signal from the ambient
backgrounds is desirable, such as the following two well-studied possibilities. First, the direction of the recoiling
nucleus is correlated with the motion of the laboratory through the galactic rest frame. This manifests itself as a
diurnal modulation in a terrestrial detector owing to the Earth’s rotation. Second, the recoil-energy spectrum undergoes
a seasonal kinematic variation owing to the Earth’s orbit around the Sun.†

If the WIMP is a neutralino it couples to nucleons via neutral current reactions mediated by exchange of Z0’s, Higgs
particles and squarks. In the non-relativistic limit, the most general possible interaction between a Majorana fermion
such as the neutralino and the nucleon reduces to a simple form with only two terms, one of which is a spin-independent
coupling and the other a coupling between the neutralino spin and the nucleon spin. Because the de Broglie wavelength
of the momentum transfer is of nuclear dimensions (i.e.,λ = h/q ∼= 1 fm for mχ = 100 GeV/c2 andv = 220 km/s),
the interaction is at least partially coherent over the target nucleus. For the spin-independent coupling, full coherence
results in a cross sectionσ0 ∝ A2 for a nucleus of atomic numberA. For spin-dependent scattering, the coupling
is dominated by the net nuclear spin, since the contributionfrom paired opposite-spin nucleons cancels. Corrections
based on nuclear spin structure functions can spoil this cancellation, rendering odd-proton nuclei sensitive toWIMP-
neutron couplings [14, 42], or vice versa.

In general, for aWIMP with equal spin-dependent and spin-independent couplings, detection via spin-independent
scattering on a large-A nucleus is favored owing to the coherent enhancement. The majority of experiments performed
to date have used heavy target materials to maximize sensitivity to this scattering mode. However, models exist (e.g.,
neutralinos that are pure gaugino or pure higgsino states) in which the spin-independent coupling is highly suppressed;
a few experiments targeted at these models have been done with low-A high-spin target materials. Since the specific
composition ofWIMPs is not known, the long-term program should address this range of possibilities.

For large target nuclei and large recoil energies, the interaction between theWIMP and a nucleus loses coherence and
the spin-independent cross section is suppressed for largeq2. Therefore, there are important tradeoffs to be made
when designing experiments between the choice of target nucleus and the obtainable energy threshold. This point
can be best illustrated by showing the results (Figure 3) of afull calculation assuming the spin-independent coupling
dominates, using standard halo parameters and the formalism discussed in [24]. AWIMP mass of 100 GeV/c2 is chosen
with a cross section normalized to the nucleon, which is representative of the best current limits in direct detection
experiments. Figure 3 shows both the differential and integrated (above the indicated threshold)WIMP event rate in
keVr (which is the recoil energy imparted to the nucleus) expected for single isotope targets of131Xe (similar for
129I), 73Ge, and40Ar.

It can be seen that for a given elastic scattering cross section for WIMP-nucleon interactions, the smaller nuclei are
penalized owing to a combination of smaller coherence enhancement (∼ A2) and the less effective transfer of recoil

†This feature, which is the basis of a controversial detection claim by theDAMA Collaboration’s NaI array, appears as an annual modulation
in the scattering rate over a fixed recoil-energy range. Aside from theDAMA claim, which has been largely ruled by other experiments under
standard assumptions, no other detections have been reported. See Section 7 for further details.
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energy to a target that is lighter than theWIMP. The recoil spectrum for the heavier Xe nucleus is significantly sup-
pressed by the loss of coherence for higherq2 scattering events (form factor suppression). For a 100-GeV/c2 WIMP,
the integrated event rate drops by a factor of two for a threshold recoil energy increase of 13, 20, and 22 keVr for Xe,
Ge, and Ar, respectively.

Figure 3:Calculated differential spectrum in evts/keV/kg/day (solid lines), and the integrated rate evts/kg/day (dashed lines) above
a given threshold energy (keVr) for Xe, Ge and Ar targets. A 100-GeV/c2 WIMP with a WIMP-nucleon spin-independent cross
section ofσ = 4 × 10−43 cm2 has been used. The plot shows that the total event rate per mass in a Xe detector with a threshold
of 16 keVr is identical to that of a Ge detector with a lower threshold of10 keVr. An Ar detector with a threshold of 16 (30) keVr

would have a total event rate per mass which is 1/3 (1/5) of Ge and Xe at the stated thresholds.

The scattering ofWIMPs on nuclei would produce signals in many types of conventional radiation detectors. For
example, scintillation counters, semiconductor detectors and gas counters are all capable of detecting nuclear recoils
of a few keV. Unfortunately, these instruments are also efficient detectors of environmental radiation, such as cosmic
rays and gamma rays from trace radioisotopes present in construction materials. Detectors exposed to environmental
radiation in an unshielded room typically register about 107 events a day per kg of detector mass, whileWIMPs are
known to produce less than 0.1 count per kg-day (approximately the current limit) and significantSUSY parameter
space exists down to10−6 per kg-day. Exploring this parameter space will require ton-scale detectors with nearly
vanishing backgrounds.

Background reduction inWIMP detectors can be approached with two basic strategies: reduction in the background
radiation level by careful screening and purification of shielding and detector components, and development of detec-
tors that can discriminate between signal and background events. Most experiments employ a combination of the two
strategies.

Technologies for producing ultra-pure low-radioactivitymaterials have been pursued by many groups, and materials
have been produced or identified with levels of radioisotopecontamination three to six orders of magnitude below
typical environmental contamination levels. For example,238U is typically present at10−6-g/g but levels in the10−9–
10−12 g/g range have been achieved [43]. This progress has gone hand-in-hand with the development of ever more
sensitive instruments for the detection of contamination.After the common environmental radioisotopes have been
minimized by purification, the dominant source of radioactivity in materials is often “cosmogenic,” i.e., originating
from isotopes that are produced in the material by cosmic-ray-induced secondaries during the above-ground man-
ufacturing process. Since purification and assembly of all but a few types of detector materials in an underground
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cosmic-ray-free environment poses a logistical challenge, additional work is required to reduce activity below the
lower limit imposed by cosmogenic activation (see Section 8.2 for further discussion). Most recent experiments em-
phasize improving the sensitivity using a background discrimination mechanism.

The development of new background discrimination mechanisms is a very active field and many innovative techniques
are being studied at the kilogram scale. The most sensitive proven technique, which is used by theCDMS andEDEL-
WEISSexperiments, exploits the difference in charge yield in semiconducting crystal targets for nuclear-scattering
compared to background electron-scattering processes. The target crystals, which are made of silicon or germanium,
are cooled below 100 mK and instrumented with both charge andphonon sensors. The ratio of the amplitudes of the
charge and phonon pulses (or simply the ratio of charge to temperature rise in some versions of the technology) is used
as a discrimination parameter. The detailed shape and timing of the pulses contains additional information which can
be exploited to separate nuclear-scattering events from events with imperfectly-collected charge.

Other background discrimination technologies include low-temperature detectors with phonon and scintillation read-
out, cryogenic noble liquid targets with pulse shape discrimination and/or simultaneous measurement of charge and
light, low-pressure gas with sensitivity to the energy density and direction of nuclear recoils, and heavy-liquid bubble
chambers with bubble nucleation conditions fine tuned to avoid backgrounds. Demonstrated discrimination factors
for gamma rays from these techniques (i.e., fraction of unrejected background events) range down to10−9 and some
of them are plausibly scalable to greater than one ton of target mass. Details and status reports on several of the
technologies are given in Section 7.

The problem of reducing the background from neutron scattering in dark matter detectors requires special mention.
Neutrons interact exclusively by nuclear scattering, so the discrimination methods mentioned above are not effective.
Discrimination is possible based on the propensity for neutrons to multiple-scatter in a detector, whileWIMPs would
only scatter once. However, discrimination mechanisms based on multiple scattering only become effective for very
large detectors with excellent spatial resolution or high granularity. Neutrons up to 8 MeV are produced by (α,n)
reactions and spontaneous fission in rock and common construction materials, and cosmic rays produce non-negligible
fluxes up to 1 GeV, even at substantial depths underground. The low-energy neutrons can be shielded by practical
thicknesses of hydrogenous moderating materials and minimized by material selection, but the high-energy neutrons
are very difficult to attenuate by shielding. This problem, which is discussed in detail in Section 8.1, strongly influences
the choice of appropriate underground laboratory depth.

We conclude this section with a description of the current results for both spin-independent and spin-dependent scat-
tering. The limits on the spin-independent cross section, in particular fromCDMS II [23], EDELWEISS[20], WARP [22]
andZEPLIN I [19], are beginning to significantly constrain theWIMP-nucleon scattering cross section in someSUSY
models, as shown earlier in Figure 2. As that figure shows, it is difficult to reconcile theDAMA claim of aWIMP
signal based on annual modulation of the rate of iodine recoils [25] with the current limits on the spin-independent
scattering cross section from other experiments. A recent reinterpretation ofDAMA ’s data as an annual modulation on
the rate of the lighter sodium nuclei [44] is sensitive to lower-massWIMPs. SuchWIMPs are possible inSUSY if gauge
unification is relaxed [27], although these investigators predict a cross section ten times lower than the corresponding
DAMA interpretation. The recent result fromCDMS II rules out most of this parameter space [23].

Limits on the spin-dependent cross section on neutrons and protons are shown in Figure 4. Since sensitivity is dom-
inated by the unpaired nucleon, different experiments tendto provide the best limits in only one or the other case.
The DAMA signal on the odd-proton sodium and iodine nuclei for neutron couplings has been ruled out by other
experiments under standard halo assumptions [24]. The corresponding case for proton couplings has been ruled out
by other experiments except in the mass range from about 5–15GeV/c2. In addition to the limit curves in the proton
graph, a spin-dependent proton interpretation is excludedabove aWIMP mass of 18 GeV/c2 by the SuperKamiokande
search [45] for high-energy neutrinos resulting fromWIMP annihilation in the sun.

4 Indirect Detection of WIMPs

WIMP dark matter can be searched for not only directly with low-background detectors, but also indirectly through
WIMP annihilation products. For example, SupersymmetricWIMPs like the neutralino are identical to their antiparti-
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Figure 4:Current limits on the WIMP-nucleon cross section for spin-dependent neutron (left) and proton (right) scattering. The
filled red contours are from DAMA [46, 47]. The limit curves are from CRESST-I (blue) [48, 47], PICASSO (magenta) [49],
CDMS-II silicon (green) and germanium (red) [50], and ZEPLIN-I (cyan) [51]. The proton case also includes limits from NAIAD
(dark green) [52] and the indirect detection limit from Super-Kamiokande (black) [45], as well as theoretical predictions from the
Minimal Supersymmetric Standard Model (MSSM) (pink) [53] and the constrained MSSM (light blue) [54].

cles, and can mutually annihilate and produce standard model particles. If the neutralino density is large enough, the
annihilation rate may be sufficient to produce detectable signals in the form of neutrinos, gamma-rays, and cosmic
rays. Detectable neutrinos would be produced in the center of the Sun [55] or of the Earth [56, 57]; gamma-rays,
positrons, anti-protons, and anti-deuterons would be produced in the galactic halo [58, 59, 60, 61], at the galactic
center [62], or in the halos of external galaxies [63].

Typically, the annihilation products have an energy equal to a fraction of the neutralino mass, with the notable excep-
tion of gamma-ray lines at an energy equal to the mass of the neutralino. The number density ofWIMPs is higher
inside compact celestial bodies such as the Sun, the Earth, and the Galactic center. In addition to a mono-energetic
energy signal in some annihilation channels, a directionalsignal pointing back to a celestial body may also provide a
distinguishing observable.

We examine here the relationship of indirect searches to direct searches in deep underground laboratories. The extent of
Supersymmetric parameter space that can be probed by the next generation of direct detectors (one order of magnitude
improvement in the current limits) is illustrated in Figure5(a) for spin-independent scattering cross sections. The figure
represents a projection of a 7-parameter Supersymmetric space onto the neutralino mass-composition diagram [64].
Green full dots indicate that all models projected onto thatpoint can be reached by direct detection searches, blue
triangles indicate that some but not all models can be reached, and red open circles that no model can be reached. The
horizontal axis is the neutralino massmχ in GeV/c2, while the vertical axis is the ratio of gaugino-to-higgsino fractions
Zg/Zh: neutralinos which are prevalently gauginos are at the top of the diagram, and neutralinos which are prevalently
higgsinos at the bottom. Neutralinos of mixed type fall around Zg/Zh ∼ 1. Since the spin-independent neutralino-
nucleon scattering cross section is chirality-suppressedfor pure gauginos and pure higgsinos, spin-independent direct
searches are mainly sensitive to the mixed-type region. However, the sensitivity of direct searches has been greatly
improving, and the next generation detector will be able to probe higgsino purity of the order of 1%, and gaugino
purity of the order of 0.1% (the latter at relatively low neutralino masses, below 100 GeV/c2, say). We will see that
indirect searches by means of gamma-rays and cosmic antideuterons are sensitive to the complementary higgsino and
gaugino regions.
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Searches forWIMP annihilation products from the centers of the Sun and Earth are sensitive to regions of parameter
space similar to those reached by direct searches. Of the annihilation products produced inside the Sun and the Earth,
only the neutrinos interact weakly enough to escape. These high-energy neutrinos fromWIMPs have been searched
for in deep underground neutrino detectors originally built to search for proton decay. Currently the best upper bounds
on neutrinos fromWIMPs come from the SuperKamiokande and Baksan detectors; the currently-runningAMANDA
experiment and the future IceCube detector will be able to improve on these limits. TheWIMP annihilation rate in
the Sun and the Earth generally depends on the scattering cross section of neutralinos with nuclei, which is the same
cross section probed by direct detection. This is so becausefor all but very massiveWIMPs the annihilation rate in the
Sun and Earth equals the rate at which they capture neutralinos. Capture occurs when repeated scattering off nuclei
makes the neutralino lose so much of its kinetic energy that it becomes gravitationally bound and sinks to the center
of the object. Thus the annihilation rate is governed by the capture rate, in turn proportional to the scattering cross
section. For this reason, direct searches and indirect searches via neutrinos from the Sun or Earth probe similar regions
in Supersymmetric parameter space. The region reached by indirect searches for neutrinos from the Sun is shown by
dots and triangles in Figure 5(b). The reach of this kind of indirect search is similar to direct searches, i.e., they probe
mixed-type neutralinos, although they do not extend so muchinto the pure gaugino and higgsino regions. (One must
also distinguish the cases of spin-dependent and spin-independent scattering cross sections: the spin-dependent cross
section contributes to scattering from hydrogen in the Sun while several, but not all, direct detection experiments are
mainly sensitive to the spin-independent cross section.)

A clear signature ofWIMP annihilation would be the detection of a gamma-ray line at anenergy equal to theWIMP
mass. The line is produced by the two-body annihilation of a pair of WIMPs into a pair of photons, which can occur
in the galactic halo, in nearby external galaxies, and in thelarge scale structure at high redshift. A similar annihilation
into a Z boson and a photon produces a gamma-ray line which forheavyWIMPs is close in energy to theγγ line. For
neutralinos, the highest cross section for annihilation into γγ occurs in the higgsino region, due to the similar masses
of (heavy) higgsino-like neutralinos and charginos, and the possibility of forming short-lived bound states among
them. Searches for gamma-ray lines from neutralino annihilation are thus mainly sensitive to the higgsino region,
as shown in Figure 5(c). Thus they probe a region of Supersymmetric parameter space different from that probed in
direct searches. In this sense, direct searches and searches for a gamma-ray line are complementary.

Antideuterons (d) are a very rare product of astrophysical processes, and detection of antideuterons could constitute
evidence forWIMP annihilation in our Galactic halo [65]. Current searches are still an order of magnitude away
from the theoretical predictions for neutralinos [66], butproposals such as the General Anti-Particle Spectrometer
(GAPS) [67] should be able to reach into the Supersymmetric parameter space. Antiparticle detection is achieved
by collecting low-energyd and observing the de-excitation ladder x-rays and pion burst following annihilation of
the exotic atom. While considerable work remains to clarifynear-Earthd backgrounds [68], these backgrounds are
far more favorable than the case of anti-protons, which are relatively more abundant in the cosmic rays compared
with the signal rate from annihilation of SupersymmetricWIMPs. The expected antideuteron flux decreases rapidly
with increasing neutralino mass and is sensitive to relatively light neutralinos. In addition, due to the specifics of
antideuteron production,d searches are mainly sensitive to gaugino-like neutralinos, more so than indirect searches
through gamma-ray lines, as shown by comparing Figures 5(c)and (d). They also provide better sensitivity than direct
searches in some of the gaugino-higgsino parameter space.

There are other indirect searches forWIMP annihilation products beyond those illustrated above, such as searches for
antiprotons, positrons, and continuum gamma-rays from pion decay. Detection ofWIMP signals has been claimed
using these probes. For example, an excess in the cosmic ray positron flux observed in theHEAT detector [69] has
been attributed toWIMP annihilation in the halo [70, 71, 72]; an excess of gamma-rayflux in the EGRETdata has
been construed as emission from an unusually-shapedWIMP halo [73]; the detection of a TeV gamma-ray source at
the Galactic Center by theHESScollaboration [74] (after tentative detections byVERITAS [75] andCANGAROO[76])
has been interpreted as due to heavyWIMPs [77, 78, 79, 80]. Unfortunately, these kinds of searches share a problem
of interpretation when ascertaining the origin of a claimedsignal: the energy spectrum fromWIMP annihilation does
not show unequivocal signatures of its origin, and anomalies can be difficult to isolate from modifications to other
astrophysical inputs, such as cosmic ray fluxes. Whether these modifications are reasonable is largely still a matter of
taste, although further data (for example fromGLAST, HESS, VERITAS, etc.) may be able to shed some light on the
issue.
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Figure 5: Reach of next generation searches for neutralino dark matter: (a) Top left: direct searches, (b) Top right: indirect
searches via high-energy neutrinos from the Sun, (c) Bottomleft: searches for a gamma-ray line in the Galactic halo, (d)Bottom
right: searches for antideuteron in cosmic rays. The figuresshow a projection of a 7-parameter space onto the neutralinomass-
composition diagram. The neutralino composition is represented byZg/(1−Zg) = Zg/Zh, i.e., the ratio of gaugino and higgsino
fractions. Green full dots indicate that all points in the projection can be reached in the respective search, blue triangles that some
but not all projected points can be reached, red open circlesthat none can be reached. (All from [64].)

In summary, indirect searches provide better sensitivity than direct searches in some regions of parameter space, and
comparable sensitivity in others. While there may be the challenge of systematic errors from assessing background
of non-WIMP astrophysical sources for some modes, indirect searches could play an equally important role as direct
searches in establishing the presence of particle dark matter. On the one hand, laboratory approach offers more control
over systematic effects, but it is also possible that the actual physical parameters ofWIMPs may lead to stronger
evidence through the observation of annihilation products, e.g., in the case of a directional mono-energetic feature.
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5 Dark Matter Candidates and New Physics in the Laboratory

A longstanding goal of the particle-physics community has been to find evidence of Supersymmetry. As noted in
Section 2, this extension to the Standard Model promises to stabilize the Higgs mass and unify the coupling constants
at theGUT scale, and is required by string theory. The currently best-motivatedWIMP candidate is the Lightest Super
Partner (LSP), which would be stable inSUSYmodels with R-parity conservation.SUSYparticles, in addition to the
Higgs boson itself, are the prime quarry for discovery at theLHC and precision studies at theILC. A detection of new
particles at theLHC beyond the Higgs would indicate new physics at the electroweak scale, possibly related to dark
matter. While laboratory results cannot independently establish a solution to the dark matter problem, the production
of a compelling dark matter candidate is of critical importance. To identify such a particle as the dark matter, a
consistent astrophysical observation would be needed to demonstrate that the same particle is found in the cosmos and
that it is stable compared with the age of the Universe. The precision in particle properties necessary to determine the
relic density with precision comparable to astrophysical and cosmological measurements would likely require theILC.

Supersymmetry has over a hundred free parameters, and so thestudy of its phenomenology spans a broad continuum
of approaches. At one end of the spectrum, constraints may beimposed that favor a particular theoretical idea, such
as minimal Supergravity (mSUGRA) or Split Supersymmetry, in order to gain predictive power.In some cases, fully-
specified models are defined that are representative of a characteristic region of parameter space, which serve as
useful benchmarks for scoping experiments or comparing thesensitivity of different approaches. At the other end
of the spectrum is the exploration of the available parameter space imposing only known empirical constraints and
minimum theoretical bias. This approach serves to define therange of experiments necessary to fully explore the
SUSY/WIMP hypothesis. Interestingly, a wide variety of models, even including the maximally constrained ones, can
lead to interesting dark matter candidates, as illustratedearlier in Figure 2.

Examples of unconstrained models include those calculatedby Baltz and Gondolo [81], and by Kim et al. [26].
These modelers only use minimal unification assumptions, empirical constraints from accelerator experiments and the
WIMP relic-density requirement. Bottino et al. [27] may represent the most extreme form of such a model, in which
unification assumptions are relaxed and result in candidates with masses down to a few GeV/c2.‡

Examples of theoretically-constrained models, which serve as a useful benchmark forLHC searches, also show the
complementarity ofWIMP and accelerator experiments. For example, consider the Constrained Minimal Supersym-
metric model [33, 82] or themSUGRAmodel [28], which impose unification of theSUSY parameters. Some of the
regions within the parameter space, such as the focus-pointregion, which tends to large scalar masses, are inaccessible
at theLHC but could be easily seen in the next generation of dark matterexperiments in the 10–100kg scale at a
WIMP-nucleon cross section of 10−44 cm2. On the other hand, in the “co-annihilation” region, theLHC has a good
chance of seeing the 5 Higgs particles, as well as gaugino decays into identifiable squarks and neutralinos. However,
theWIMP-nucleon cross section could be anywhere in the range 10−46–10−44 cm2, which requires a ton-scale detector
for a full exploration.

More highly-specified models, such as the recently-proposed Split Supersymmetry model of Arkani-Hamed and Di-
mopolous [83], lead to theWIMP-nucleon cross-section range of 10−45–10−44 cm2 [31, 32]. This model, inspired by
the large number of vacua in string theory and the difficulty of accounting for the apparent small value of the cosmo-
logical constant, further decreases the effective number of parameters by allowing the scalars to be very massive. An
anthropic argument is used to pay the price of fine-tuning theHiggs mass to account for the dark matter—otherwise
galaxies (and observers) would not have formed. In additionto the narrow range of predicted elastic cross sections,
there are also testable consequences in accelerator experiments. TheLHC would detect only one Higgs, the neutralino
(if it is light enough), and a long-lived gluino [84]. Meanwhile, direct searches would check that indeed the neutralino
constitutes the dark matter, providing the justification ofthe Split-Supersymmetry scheme, and fixing the remaining
parameters of the model. According to [83], the long life of the gluino would then be a signature for fine tuning.

In recent years, there has been much excitement about compact extra dimensions of order 1 TeV−1 as an alternative
explanation of the hierarchy problem. In a broad class of such models, the lightest Kaluza Klein excitation is stable

‡As shown in Figure 2,CDMS II has ruled out the low-mass branch of this model down to 10 GeV/c2 . The region from 5–10 GeV/c2 could
accommodate theDAMA result for sodium recoils, however the halo velocity distribution would need to be altered to enhance the modulation
amplitude since the predicted cross section is too low by an order of magnitude under standard assumptions (see also Figure 4 of Ref. [23]).
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and could be the dark matter [85], with a mass of order 1 TeV/c2. Interestingly, the elastic scattering cross section
covers the range from 10−46 to 10−42 cm2 per nucleon.

A new benchmark study is well underway to look at connectionsbetween cosmology and theILC. Because the actual
parameters ofSUSYare numerous and their values unknown, these benchmarks help to define measurement scenarios
for specific experimental signatures at theLHC, ILC, and direct searches, as well as how a set of actual measurements
could, in turn, constrain the theoretical parameter space.

Figure 6: Allowed range of the WIMP-proton elastic cross section for LHC and ILC measurements of the benchmark models
LCC1 (top left), LCC2 (top right), LCC3 (bottom left), and LCC4 (bottom right). The three curves in each graph correspondto
measurements of these models at the LHC, ILC 500-on-500 GeV and ILC 1000-on-1000 GeV. See text for details [86].

Detailed calculations are being performed for each benchmark model by computing a set of measured physical quan-
tities, including experimental uncertainties, and then examining the full range ofSUSYparameter space that would be
allowed by these measurements. From this range of allowed parameters, specific derived quantities of interest can be
constrained. For example, to inform dark matter searches the mass of theLSPand its elastic cross section on nucleons
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could be constrained. In particular, a set of benchmark points accessible to both theLHC andILC, and interesting for
cosmology, has been proposed. LabeledLCC1–4, each has a relic density broadly similar to that required toexplain
the dark matter. While each is accessible to direct dark matter searches, the aim of this study is to the examine and
compare what can be learned about the benchmark models from the different approaches.

For benchmark pointLCC1 (in the bulk region where coannihilations are not necessary), Baltz, Battaglia, Peskin and
Wizansky [86] determined that if that model is the actual model in nature, and theLHC measured accessible masses
(three of the neutralinos, sleptons except the heavy stau, squarks except for the stops, the gluino, and the light Higgs),
then the range of models consistent with those measurementswould allow the neutralino-proton cross section to vary
over an order of magnitude, as illustrated in Figure 6. In fact, the central value is off by more than a factor of two. Also
shown is the allowed range for what would be measured forILC center-of-mass energies of both 500 GeV and 1 TeV.
The 500-GeVILC offers some improvement, but the TeVILC is required for a solid measurement. This is because
the important quantity for direct detection in this model isthe mass of theheavyHiggs boson, which at 395 GeV is
accessible only to the TeVILC. The non-detection atLHC or ILC-500 gives the wide range of possibilities, limited only
by the artificial upper limit (taken to be 5 TeV) put on this mass. Figure 7 illustrates specifically what a direct-detection
constraint can do for particle physics. In particular, the mass of the heavy Higgs bosons is usually unconstrained until
a TeV ILC, unlesstan β is large. For pointLCC1, the mass distribution for theCP-odd Higgs improves significantly
for LHC and evenILC-500 measurements. This shows that direct detection would strongly constrain this part of the
Higgs sector before a TeVILC was available, and again relates dark matter and electroweak symmetry breaking!

Figure 7:Allowed range of the mass of the heavy CP-odd Higgs in the LCC1model is shown for accelerator-based measurements
(left) and combined accelerator and direct detection (right) with a per-nucleon cross-section sensitivity of 10−45cm2, such as the
SuperCDMS 25 kg experiment [86].

For the benchmark modelLCC2, (in the focus-point region where neutralinos can annihilate to gauge bosons, and
coannihilations with charginos can be important), colliders can do a better job of constraining the direct-detection
cross section. This model has a “mixed” neutralino giving larger elastic cross section, and it depends on the light
Higgs, easily constrained by theLHC. The usually dominant heavy Higgs is more than 3 TeV/c2 in mass, and thus
irrelevant to direct detection. At theLHC, there is a complication in that the data can not distinguishbetween the
discrete possibilities that the lightest neutralino is Bino, Wino, or Higgsino. Assuming a standard halo, a few dozen
events in a direct detection experiment would serve to completely eliminate the incorrect solutions. TheILC would be
required to eliminate the incorrect solutions without astrophysical input.

For the benchmark modelLCC3 (with stau coannihilations important), again colliders give little information before a
TeV ILC, though in this case, the heavy Higgs bosons are visible evento theLHC. Here, the important uncertainty is
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the gaugino-higgsino mixing angle that can only be readily constrained by a TeVILC, which can observe most of the
neutralinos and charginos. Furthermore, the TeVILC could also measure the width of the pseudoscalar Higgs, which
constrainstan β and thus the neutralino mass matrix.

The pointLCC4 is an interesting case. This model has a large resonant annihilation cross section (through the pseu-
doscalar Higgs, which is closely tied in mass to the heavy Higgs). Again, these heavy Higgs particles are visible to the
LHC, but the neutralino mixing angles can only be measured at a TeV ILC. As with LCC3, measuring the width of the
pseudoscalar Higgs at a TeVILC givestanβ, but for this point, the measurement is crucial for determining the relic
density.

So we see that for all of these benchmarks, which have been chosen to illustrate the power that colliders would have,
direct detection would make significant contributions to fundamental physics, in advance of a TeV linear collider.
While suchLHC/ILC measurements could help to constrain the astrophysical searches, aWIMP detection in the Galaxy
leading to a determination of the elastic cross section would place a significant constraint onSUSY, otherwise absent
from the accelerator experiments. Since aWIMP detection could constrain the elastic cross section to better than
a factor of a few, the neutralino mass matrix becomes better defined because the mixing angles are constrained by
including the elastic cross section measurement. The uncertainties are dominated by halo uncertainties and the strange
content of the nucleon forSI interactions.SD interactions suffer, in addition, from uncertainty in the spin structure of
the nucleus. From the direct-search viewpoint, it is important and attainable that the long-term program address the
sensitivity requirements for bothSI andSD interactions. Sorting out this physics will require a variety of target nuclei
with different masses and spins, and the presentR&D program is headed in that direction (see Section 7 for further
details).

As for theLHC/ILC informing the solution to the dark matter problem in the absence of halo searches, the best they
can do is refine the candidates but can say nothing relevant about the stability on the Hubble time scale. In fact, if
LHC/ILC measurements result in a robust prediction that astrophysical searches should have seen somethingbut didn’t
then we may arrive at the very interesting conclusion that the particles are unstable and that R-parity is not conserved.
This result could not be obtained from accelerator experiments, alone. Thus the question of particle stability, the
province of dark matter searches, is of fundamental importance to both cosmology and particle physics. Moreover,
the WMAP measurement of the relic density is broadly recognized as a powerful, though hypothetical constraint on
SUSYparameters—that constraint is only realized once it is demonstrated that the neutralino is stable on the Hubble
time scale and the particle mass is consistent between the halo and accelerator measurements. It remains that an
astrophysical detection ofWIMPs is the essential link between early-universe physics and fundamental particle physics
in this sector.

* * *

In summarizing sections 3, 4 and 5, we see that detectingWIMP scatters in terrestrial detectors, observing astrophysical
sources ofWIMP annihilation products, and producingWIMPs and related particles in the laboratory can each play an
important role in resolving the dark matter problem and elucidating the new fundamental physics that could be behind
it. Direct detection remains the clearest and most promising means for establishing thatWIMPs exist in the galaxy. If
WIMPs are comparable in mass that that of detector target nucleus, then theWIMP mass can be determined well enough
to cross check against accelerator-produced candidates, and even ifWIMPs are heavier, the target mass serves as a
strong lower-bound. With detection in multiple targets, the nature of theWIMP coupling to nuclei can be constrained.
A measurement of the elastic cross section also has the potential to provide information about the underlying particle
model, e.g., the neutralino mixing angles. Indirect searches have the challenge of discriminating against astrophysical
backgrounds in most channels, but the possibility of a “smoking gun” signal remains, for example, from a mono-
energetic and/or directional signal. Together, either thedirect or indirect techniques are needed to establish particle
stability comparable to the age of the universe—and could also inform us on the nature of R-parity. While indirect
means will inform the annihilation cross section, it remains with the accelerator-based experiments to work out the full
phenomenology of theWIMP sector and to permit a sufficiently robust calculation of therelic density. Naturally, we
stand to learn the most ifWIMPs are observed in all three regimes, in terms of both overall confidence and consistency,
and through reducing uncertainties of both the particle properties and the astrophysical parameters (such as halo
density and velocity distribution). If we are unfortunate in that the observation ofWIMPs proves elusive, then it
is equally important to push on all fronts since there are substantial regions of parameter space that are searched
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uniquely by only one method. Unless and until new information arrives, say, a detection of dark matter axions,WIMPs
remain an excellent hunting ground.

6 Synergies with Other Sub-Fields

Dark matter searches push the frontier on low-background low-threshold high-energy-resolution particle detection.
These capabilities are similar to some of the requirements for double-beta decay experiments, and not surprisingly
there has historically been a strong connection between these fields. Despite the great differences in the characteristics
of the rare decays sought, background concerns for the two experiments are very similar and result in many of the
same shielding and cleanliness requirements. However, thedemands on both types of experiments have become
so strict that it is extremely difficult for a single experiment to be competitive in both sub-fields. For double-beta
decay, discrimination of electron recoils from nuclear recoils is not important, but excellent energy resolution at
relatively high energies (∼MeV) and rejection of multiple-site events are critical. While it is very unlikely that a
single experiment can pursue both dark matter and double-beta decay without compromising the sensitivity for either
process, technological advances driven by a dark matter experiment could benefit a double-beta decay experiment
based on the same target material. This synergy will become especially relevant as experiments move to larger scale
and cost. We discuss in more detail below the requirements and opportunities for a multi-purpose experiment, in some
specific target material.

Following that, we examine the prospects for the detection of supernova neutrinos in dark matter experiments. As the
experiments reach the ton scale, supernova neutrinos become interesting quarry because, likeWIMPs, the scattering
rate from nuclei is enhanced by coherence effects.

6.1 Double-Beta Decay

Dark matter experiments using Ge detectors could also, if enriched in76Ge, be useful for searching for neutrinoless
double-beta decay. Cryogenic detectors based onNTD thermistors or athermal-phonon sensors could result in better
energy resolution than the∼ 4 keV of Ge ionization detectors alone, resulting in improvedbackground rejection, es-
pecially of the importantββ2ν background. The intrinsic energy resolution of athermal-phonon sensors can be better
than 200 eV (FWHM), but better correction for the position dependence of the collected energy will be necessary in
order to achieve resolution better than 5 keV at energies of 2MeV. Furthermore, athermal-phonon sensors may pro-
vide sufficient position reconstruction to allow improved rejection of multiple-site events from Compton backgrounds
and inelastic neutron interactions. At a scale of 500 kg to a ton, a single experiment combining the technologies of
current dark matter and double-beta decay experiments may be able to achieve both goals, with sensitivity to effective
Majorana neutrino mass of 20 meV.

Xenon is another element that is being used for both dark matter detection and double-beta decay, where the latter
exploits the isotope136Xe. However, the operating principle and the readout of a liquid xenon TPC for dark matter
and for double-beta decay are quite different and, at present, exclude the possibility of a single experiment for both
processes. The poor energy resolution of a dual-phase xenonTPC as currently implemented for dark matter detection,
where the emphasis is rather very low energy threshold and recoil discrimination, is incompatible with a double-
beta decay search which has to emphasize energy resolution to distinguish the two-neutrino process at the continuum
endpoint from the mono-energetic zero-neutrino process. In the long term, the goal of building a directional gaseous
TPC for dark matter may offer a unique opportunity for double-beta decay detection if xenon enriched in136Xe is a
component of the chamber. Preliminary studies are underwayto assess the background-rejection capability and the
physics content that would result from a measure of the opening angle of the two mono-energetic electrons emitted by
the zero-neutrino decay process.

Also notable is the element tellurium, which has a double-beta decay nucleus in130Te. This element is being pursued
primarily for double-beta-decay studies by instrumentingTeO2 with NTD thermistors in a cryogenic array known as
Cuore. Owing to the very low radioactive background and an energy threshold of 10 keV, this experiment will also
have sensitivity to dark matter signals.
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Thus, while the emphasis of the dark matter and double-beta decay studies are different in several respects, these dif-
ferences tend not to be mutually exclusive, especially in the case of cryogenic crystals with very fine spectroscopy. For
these, as well as for other materials such as liquid xenon, many technology developments, such as radio-purification,
low-background assays, ways to improve energy resolution,ways to fabricate large arrays, etc., are common to both
efforts, and there has been much positive exchange between the fields. It is possible that a particular experiment could
be well-suited to performing frontier studies on both counts. However, as the needs for each become more restrictive
and the experiments become more complicated, it is criticalto optimize each experiment’s design to ensure obtaining
its primary measurement of interest.

6.2 Supernova Neutrino Detection

The core-collapse of a massive star, and the subsequent Type-II supernova event, releases a burst of∼ 1058 neutrinos
of all flavors at of order 10 MeV energy. Neutrinos with these energies have an enhanced rate for scattering from nuclei
due to coherent interactions, producing nuclear recoils oforder 10 keV—above dark matter detection thresholds. As
detectors reach the ton scale and beyond within the dark matter program atDUSEL, the detection of these neutrinos, in
particular from a supernova in our galaxy, becomes possible. Here we summarize the rates and prospects for detecting
supernova neutrinos.

The condition for coherent nuclear scattering is∆RA < 1, where∆ is the three-momentum transferred to the nucleus,
andRA is the radius of the nucleus. For all nuclei of interest up to germanium, this condition is satisfied for neutrinos
up to energies of about 50 MeV. Supernova neutrinos emerge with nearly thermal spectra, with mean energies of
13, 15, and 24 MeV for electron-neutrino, electron anti-neutrino, and muon/tau neutrino flavors, respectively. The
average energy of the recoiling nucleus is2/(3A)(Eν/MeV)2, whereA is the mass number of the nucleus, making
the coherent-scattering channel sensitive to the high-energy tail of the thermal spectrum. Heavier target nuclei havean
A2 enhancement of the total cross section, but the energy of therecoils is smaller than for lighter nuclei.

As an example of expected yields from a Galactic supernova at10 kpc, there will be 18 events in 1 ton of germanium
from muon and tau neutrinos, with 10 events above 10 keV recoil energy [87]. Electron neutrinos contribute a total
yield of 4 events. For lighter nuclei, in particular for the case of a neon target, there will be a total yield of about
4 events, including all neutrino flavors. For lighter nucleithere is a larger probability that all of the recoils will be
above 10 keV. In some cases, the intrinsic threshold for neutrino scatters may be substantially lower than for dark
matter. Ordinarily, the threshold for dark matter detectors that rely on a dual measurement for gamma and beta
rejection is determined by optimizing efficiency versus background rejection. Since the neutrino events occur in a
burst coincident with an externally-defined time window, background rejection is not needed and so the intrinsic lower
energy-threshold of the device can be used. In the case of cryogenic detectors, their intrinsic 1 keV threshold allows
the full recoil-energy spectrum to be detected. With burst-detection thresholds of a few keV, nearly the full spectrum
would be accessible to scintillation detection, e.g., in noble liquids.

The yield from a Galactic burst is clearly small compared with the expected yields in much larger neutrino detectors,
such as Super-Kamiokande,KamLAND, andSNO [88]. However, even a few events in a 1-ton dark matter detector
could be the first detection of neutrino-nucleus coherent scattering. This is very promising if we consider that larger
neutrino detectors will accurately determine the average energies of the different flavors. From just a few recoil events,
we can make the first measurement of the coherent cross section, and look for deviations from the expected standard
model result.

In addition to the yield from a Galactic supernova, potential 100-ton detectors may have sensitivity to the Diffuse Su-
pernova Neutrino Background (DSNB). Modern predictions indicate that theDSNB flux is approximately 6 cm−2s−1,
including contributions from all neutrino flavors [89]. In a100-ton germanium detector, this corresponds to about
2 events per year. In addition to this low event rate, a hindrance forDSNB detection is that the meanDSNB neutrino
energy is lower relative to the spectrum of neutrinos from a galactic supernova burst, due to cosmological redshifting
of neutrino energies. However, this flux may be detectable iftheWIMP-nucleus cross section is at the lower end of the
theoretical models.
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7 Direct Detection Experiments: Status and Future Prospects

The initial goal of direct dark matter searches is to detect asignal that can be confidently attributed to elastic scatters
of galactic haloWIMPs from the nuclei in an earthbound detector. It would be essential to follow up an initial detection
by confirming the signal and its galactic-halo origin in several ways:

• Detect again using a different target nucleus, to confirm that the cross section scales with nuclear mass or spin
as expected for scattering ofWIMPs rather than neutrons or other background.

• Constrain theWIMP mass to the greatest extent possible by measuring the recoilspectrum in a well-matched
target nucleus to test whether it is compatible with candidates resulting from accelerator-based experiments.

• Confirm the galactic origin of the signal by detecting the expected annual modulation effect, which would require
increased statistics, and the diurnal modulation effect, which would require a directionally-sensitive detector.

• Ultimately, refine our understanding of the galactic halo byaccumulating larger statistics in both recoil energy
and directional measurements to exploit information in spectrum and modulation signals.

With these broad goals in mind, we review in this section the present status of the direct detection experiments and of
theR&D programs underway for future experiments.

The following subsections, listed alphabetically, detailthe status and prospects of specific experiments, with an em-
phasis on those that are included in the infrastructure matrix assembled in the context of the “Solicitation 1” process.
(For a more comprehensive review of dark matter searches, see, for example, the recent review by Gaitskell [90].)

7.1 CLEAN and DEAP

TheCLEAN experiment, or Cryogenic Low Energy Astrophysics with Neon, is a large cryogenic scintillation detector
with 130 tons of liquid neon as the active material. The central dewar is to be approximately 6 m on a side, located
within a 10-m-diameter by 12-m-tall water shielding tank. The combination of water shielding, self-shielding by a
layer of neon outside the central fiducial volume, and the radiopurity of neon, results in very low backgrounds. The
scintillation light output has a time structure that allowsdiscrimination between electron recoils and nuclear recoils.
The design sensitivity is 10−46 cm2 per nucleon for WIMP-nucleus spin-independent scattering. Other physics goals
include a 1% measurement ofp-p solar neutrinos, supernova neutrino detection, and 10−11µb neutrino magnetic
moment detection. The collaborators describeCLEAN as anR&D collaboration at this time with emphasis on the
development of smaller-scale prototypes to realize the technical requirements of a large LNe detector. The program
has evolved to enable such smaller-scale prototypes to be exploited in a dedicatedWIMP search using LAr in place of
LNe based upon recent developments to exploit LAr in a detector dubbedDEAP (Dark matter Experiment with Argon
and Pulse shape discrimination).

7.2 Chicagoland Observatory For Underground Particle Physics (COUPP)

A heavy liquid bubble chamber (CF3I) sensitive to nuclear recoil events has been operated in a thermodynamic regime
in which it is insensitive to minimum-ionizing radiation and electron recoils from gamma and beta backgrounds. It
thus affords a high degree of background discrimination. The critical challenge of long-term stable operation of the
chamber has been met, which requires a glass-walled vessel to minimize surface-induced nucleation events. The high
content of nonzero spin nuclei is noteworthy for this targetmaterial. The present 2-kg room-temperature prototype,
which is expected to have a sensitivity of approximately of 10−42 and 10−40 cm2 per nucleon for spin-independent
and spin-dependentWIMP scattering, respectively, would be scaled up in phases to 250 kg, 1000 kg, then several tons.
This prototype is now running in a 300 m.w.e.-depth site at Fermilab.
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7.3 Time Projection Chambers (Directional-TPC group and DRIFT III)

Two collaborations, Directional-TPC group and theDRIFT-III (Directional Recoil Identification from Tracking) col-
laboration, are proposing Time Projection Chambers (TPC’s) with total mass in the hundreds of kilograms, to initiate
the study ofWIMP astronomy by tracking nuclear recoils in low-pressure gas at room temperature. The solar system
orbits around the galactic center with tangential speed similar to that expected for haloWIMPs, and presently directed
toward the constellation Cygnus. Combined with the Earth’srotation on its axis, this will result in a sidereal-day
modulation of thedirectionof WIMPs in an earthbound lab, as the apparent source of theWIMP wind rises and sets.
A large low-pressure negative-ionTPC can measure the orientation ofWIMP-recoil tracks, as was shown by the 0.2
kg DRIFT-I andDRIFT-II prototypes in the Boulby Mine. While such detectors also have very good discrimination
properties, work is ongoing to demonstrate this at sufficiently low thershold. These devices presently rely on use of
a toxic flammable chemical dopant (CS2) for the negative-ion drift. AlthoughDRIFT underwent a thorough safety
review to operate in Boulby and has had no accidents of any sort in roughly five years of operation,R&D is underway
to identify alternative dopants.

7.4 European Underground Rare Event Calorimeter Array (EURECA)

TheCRESSTandEDELWEISScollaborations have developed extremely sensitive cryogenic solid detectors operating at
milliKelvin temperatures. Electron- versus nuclear-recoil discrimination is achieved by combining heat detection with
a secondary signal that has a different response for the two recoil types. TheCRESSTdetectors augment the thermal
signal with a scintillation signal in CaWO4 targets which is detected thermally in a second adjacent device. Two 300-g
detectors were successfully operated in Gran Sasso and werelimited by nuclear recoils consistent with that expected
from neutron-background (and the limited shielding deployed in this early run). TheEDELWEISSdetectors augment
the thermal signal in germanium targets with an ionization signal. Their 2002 and 2003 data sets from an array of
three 300-g detectors were a then world-best upper limit. The sensitivity was limited by a low-energy beta background
that suffers ionization-signal loss near the detector surface. Improved designs are being developed, some of which
include a highly-resistive metal-film readout that should offer additional information for discriminating surface events
from bulk nuclear recoils. TheEURECA program is the joint effort of these two collaborations to plan a ton-scale
recoil-discriminating cryogenic array to achieve sensitivity in the 10−46 cm2/nucleon range.

7.5 Scintillation and Ionization in Gaseous Neon (SIGN)

The SIGN (Scintillation and Ionization in Gaseous Neon) concept is amodular room-temperature nuclear-recoil-
discriminating pressurized neon target for dark matter andneutrino detection. A detector module would consist of
a cylindrical vessel with a diameter of∼50 cm and a length of∼5 m. An array of 100 modules at 100 atm would result
in a 10-ton target mass and occupy a detector space of less than 1000 m3, including a 2-m-thick shield. The signal
would be read out from both ends of the cylinder either as charge or as light via wavelength-shifting fibers, and would
provide position information along the cylinder. Timing between the ionization and scintillation signals would provide
radial positioning. The primary scintillation signal would be detected using a photocathode on the inside diameter of
the cylinder. Nuclear-recoil discrimination is achieved by the ratio of ionization to scintillation. Measurements have
recently been completed that confirm excellent discrimination between gammas and nuclear recoils. The physics reach
for WIMPs is10−45 cm2/nucleon per ton of detector assuming zero background. Sucha detector would also see∼2.5
nuclear-recoil events per ton from a supernova at a distanceof 10 kpc (center of galaxy). Low energy nuclear recoils
(<3 keV) would also be observable from coherent scattering with solar neutrinos with energies above 10 MeV.

7.6 SuperCDMS

The CDMS collaboration has developed semiconductor detectors of both silicon and germanium which operate at
milliKelvin temperatures. Recoil discrimination is achieved by combining ionization and athermal-phonon readout.
While the ionization signal suffers the same tendency with regard to low-energy betas as theEDELWEISSdetectors,
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the athermal technology provides phonon-pulse shape information that allows event localization. This information
permits surface-versus-bulk discrimination to reject surface betas, which would otherwise be the dominant internal
background.CDMS has set world-leading limits in the mid-10−43 cm2/nucleon range using several 0.25 kg detectors
in the Soudan Mine, and expects to improve the sensitivity bya factor of 10 in 2006–2007. SuperCDMSwould further
develop this technology to larger detector modules with improved performance to further reject surface betas, and to
engage industrial partners to eventually reach an array of total mass of about one ton. Sensitivity is anticipated to reach
10−46 cm2/nucleon.

7.7 XENON

TheXENON collaboration is currently developing a discriminating liquid-xenon 15-kg prototype detector with an ex-
pected sensitivity of mid-10−44 cm2/nucleon, coupled with advancedR&D to develop a ton-scale experiment. Signals
from primary scintillation in the liquid and proportional scintillation by electrons extracted into the gas phase are being
shown to allow both electron-nuclear recoil discrimination and 3-D localization of events. The prototype is currently
being installed in a shielded setup at Gran Sasso. Based on what is learned there, along with detailed laboratory studies
of various readout schemes to maximize light-collection, the collaboration anticipates fielding a set of 100-kg modules
to reach one ton of active mass and sensitivity to aWIMP-nucleon cross section of 10−46 cm2/nucleon.

7.8 ZEPLIN IV-Max

TheZEPLIN collaboration has used several kilograms of liquid xenon ina scintillation detector with pulse-shape dis-
crimination (ZEPLIN-I) to set limits vying with the world’s best. In addition to self shielding, the detectors have
external liquid-scintillator vetoes. Currently the groupis commissioning detectors with tens of kilograms of active
mass, which derive signals from both primary scintillationand ionization in the liquid to discriminate electron from
nuclear recoils and to localize events within the sensitivevolume. These systems use liquid-plus-gas “two-phase” de-
tection employing two different readout schemes in theZEPLIN-II andZEPLIN-III detectors.ZEPLIN-IV (also referred
to asZEPLIN-Max) would scale up the two-phase technique to a ton of active mass with sensitivity in the range of
10−46 cm2/nucleon.

7.9 Summary

The direct detection of dark matter is a vital, growing field with a number of well-developed plans for developing
ton-scale experiments. The goal of all such experiments is to reach deep into theSUSY-predictedWIMP-nucleon
cross-section range of∼ 10−46 cm2/nucleon for spin-independent couplings. While mostSUSYmodels have stronger
spin-independent couplings, the sensitivity of these sameexperiments to spin-dependent couplings, e.g., through the
presence of isotopes such as17F, 73Ge, and129Xe, is also of great interest. Achieving this sensitivity level will
require sufficient depth and local shielding to bring unvetoed neutron interactions in the detector material to well
below3 × 10−5 events/kg/day. A combination of very effective local shielding and muon vetoes, high radiopurity,
event discrimination, and accessible well-planned deep laboratory space are needed to reach this physics-driven goal.

8 Infrastructure

In this section we describe infrastructure and technical support that is generally required for dark matter experiments
aimed at ton-scale detectors. Depth, which is a particularly important requirement because it is the primary method of
suppressing the cosmogenic neutron background, is treatedin Section 8.1. Following that discussion, we describe in
Section 8.2 the materials handling methods that are needed.Section 8 concludes with an itemized list of the space and
facilities needs defined by the envelope of possible experiments, and a second list of experiment-specific items that the
lab needs to be prepared to provide depending on which experiments are staged there.
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Since a separate working group is devoted to low-backgroundcounting, we do not discuss that here. Of course,
such facilities are critical to the preparation of dark matter experiments, and access to state-of-the-art low-background
assaying and cleaning methods developed at the laboratory will be vital to the success of virtually the full range of
dark matter detection strategies.

8.1 Depth Requirements

The most important cosmic-ray-muon background for direct dark matter detection experiments is due to fast neutrons
(20–500MeV) produced outside the detector shielding. These high-energy “punch-through” neutrons are difficult to
tag with a conventional local muon-veto system, as they can originate several meters within the cavern’s rock walls.
They create secondaries in the surrounding shielding materials, which can scatter in the detector target and generate
signals quite similar to those ofWIMPs. While a variety of countermeasures are possible, such as thick active shields
and wide umbrella vetoes deployed in the cavern, an extensive earthen overburden remains the most reliable means to
reduce the muon flux and its accompanying cosmogenic-neutron background. Moreover, as the mass and sensitivity
of dark matter searches grows to the ton-scale and beyond, asexpected on the time-scale of the 30-plus yearDUSEL
program, the combination of depth and active shields may be called for. Therefore siting the laboratory at the greatest
depth possible is critical to a successful long-term program.

Estimates of the size of the punch-through neutron background depend on the muon flux, material composition of a
specific underground site, neutron-production cross sections, and the details of the subsequent hadronic cascades. The
muon flux is the best measured of these, and at the earth’s surface is about 170/m2/s with a mean energy of about
4 GeV. The attenuation at 4500 m.w.e. is nearly a factor of107 with a flux of 800/m2/y and a much harder spectrum
with mean energy of about 350 GeV. For comparison, the flux at 1700 m.w.e. is 100 times higher, while at 6000 m.w.e.
it is 15 times lower. The neutron flux in the energy range of interest does not decrease as quickly with increasing depth
because the neutron production rate and yield (per muon) increase with muon energy.

The neutron cross sections are far more uncertain than the muon flux and spectrum. Energetic muons produce neutrons
in rock through quasielastic scattering, evaporation of neutrons following nuclear excitation, photonuclear reactions
associated with the electromagnetic showers generated by muons, muon capture, and secondary neutron production
in the subsequent electromagnetic showers and hadronic cascades. The neutron yield as a function of the mean muon
energy is approximately a power law,N ∝ 〈Eµ〉

0.75. While various theoretical estimates of the high-energy neutron
spectrum at depth have been made, few experiments have been done.

A recent and comprehensive study of the cosmic-ray muon flux and the activity induced as a function of overburden
has been made for a suite of underground laboratories ranging in depth from∼1000 to 8000 m.w.e. [91] derived from
the Monte Carlo muon-shower propagation codeFLUKA . TheFLUKA code works reasonably well, with deviations
from measurements being about 50%. This study also developsa Depth-Sensitivity-Relation (DSR) in an attempt to
characterize the depth requirements of next-generation experiments searching for neutrinoless double-beta decay and
WIMP dark matter.

Figure 8a shows the total flux of cosmic-ray muons as a function of overburden and for a selected set of underground
laboratories. Depth is defined in terms of the total muon flux that has been experimentally determined and that would
be present in a laboratory with flat overburden. Figure 8b shows the total neutron flux that is induced by the muons
and that emerge at the rock-cavern boundary of an underground site. Roughly speaking these fluxes are attenuated by
about one order of magnitude for every increase in depth of 1500m.w.e.

The effect of this muon-induced background will depend uponthe details of a specific detector geometry and its
scientific goal. In ref. [91], theDSR was developed for germanium detectors specific to the directsearch forWIMP
dark matter (CDMS II) and that under development to search for neutrinoless double beta decay (Majorana). As can be
seen in Figure 9, elastic scattering of fast neutrons produced by cosmic-ray muons represent an important background
for direct dark matter searches, while Figure 10 demonstrates the sensitivity to these fast neutrons in neutrinoless
double-beta decay experiments owing primarily to inelastic scattering processes.

Next-generation dark matter experiments will either require depths in the range of 4000–5000m.w.e. or greater, or
significant steps to actively shield or veto the fast neutrons produced through cosmic-ray muon interactions to reach
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the desired sensitivity levels. Which option is more cost-effective will depend on the available of space at depth, and
the nature of the central detector hardware. For example, some classes of experiments, such as noble liquids may lend
themselves to submersion in large water-filled cavities. Although the focus here is on depth requirements to defeat fast
neutron backgrounds, the experiments will also need to address internal sources of neutrons from (α,n) reactions and
nuclear fission in the residual contamination in detector and shielding components, which should also be sufficiently
thick to shield against similar neutron sources in the surrounding rock.

Figure 8: (a) Left: The total muon flux measured for the various underground sites as a function of the equivalent vertical depth
relative to a flat overburden. The smooth curve is a global fit function to those data taken from sites with flat overburden. (b)
Right: The total muon-induced neutron flux deduced for the various underground sites displayed. Uncertainties on each point
reflect those added in quadrature from uncertainties in knowledge of the absolute muon fluxes and neutron production rates based
upon simulations constrained by the available experimental data. (All from [91].)

Figure 9:(a) Left: The predicted event rates for spin-independent WIMP-nucleon scattering (dotted-line) in Ge assuming a WIMP-
nucleon cross-section ofσp = 10−46 cm2 and a 100-GeV/c2 WIMP mass. Muon-induced neutron backgrounds are also displayed
for comparison, indicating the need for greater and greaterdepth as experiments evolve in scale and sensitivity. (b) Right: The
Depth-Sensitivity-Relation (DSR) derived for the actual CDMS-II detector geometry (upper curve) and for a reconfigured shield in
which all the lead gamma shield is exterior to the polyethylene moderator. The muon-induced background is dominated by elastic
scattering of neutrons depositing visible recoil energy ina 10 to 100 keV window. Specific points are shown, for example,at the
depth of the Soudan mine where the CDMS-II detector has been operating. Uncertainties reflect those present due to uncertainties
in the rock composition and in generating the muon-induced fast neutron flux. (All from [91].)

For example, simulations carried out by theCDMS II collaboration [23] at the Soudan Mine depth of 2080 m.w.e.
using Geant3 to propagate cosmogenic neutrons from the rockpredict that this Ge-based experiment would detect
single-scatter nuclear-recoil events from punch-throughneutrons at a rate about one per 400 kg-d exposure. With an
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Figure 10: (a) Left: A simulation of the muon-induced background for a Majorana-like experiment operating at an equivalent
overburden provided by the Gran Sasso Laboratory, showing the full spectrum and an expanded profile (inset) spanning theRegion-
of-Interest (ROI) around the Q-value for neutrinoless double beta decay at 2039 keV. The peak at 2023 keV is characteristic of that
produced via the76Ge(n, n′γ) reaction. (b) Right: The Depth-Sensitivity-Relation (DSR) applied to a Majorana-like experiment.
The raw event rate in the energy region of interest of 0.026 events/keV/kg/year can be reduced by a factor of 7.4 by exploiting the
detector granularity, pulse-shape discrimination, and detector segmentation. The upper curve displays the background simulated in
the case that no active neutron veto is present and the lower curve indicates the reduction that would result from an active neutron
veto that is 99% efficient. (All from [91].)

additional factor of two reduction from a scintillator vetosystem, the estimated rate of unvetoed neutrons becomes
0.5 events/kg/year. An exposure of 3 kg-years, which corresponds to aWIMP-nucleon sensitivity of10−44 cm2 in the
absence of background, would contain 1.5 background eventsat this rate. More detailed simulatons that include cor-
relations of the parent muon, as well as all charged and neutral secondaries, were done withFLUKA andMCNPX that
simulate energy depositions in the surrounding scintillator and in the dark matter detectors [92]. These simulations
predict a rate of 0.05 events/kg/year±0.01 (stat.)±0.03 (sys.), where the reduction compared with the previoussimu-
lations is in part attributed to improved tracking of signals in the scintillator, and a larger fraction of multiple-scatters
(these latter simulations were done for a 10-times larger array). At the higher rate, which is very likely an overestimate,
a factor of 300 improvement to reach10−46 cm2 sensitivity would require, according to theDSR derived in [91], a
depth of 6000 m.w.e. in the absence of additional shielding measures. At the lower rate a depth of 4200 m.w.e. would
suffice for a factor of 30 reduction.

While the absolute rate of unvetoed nuclear recoils estimated with Monte Carlos lacks direct validation with experi-
mental data for the specific mechanisms that lead to background events in dark matter experiments, detecting events
correlated with unvetoed nuclear recoils can be used to predict their rate. For example, in the CDMS experiments
performed at shallow depth, neutrons that multiple scattered were combined with simulations to estimate the number
of single scatters associated with the same ambient neutronpopulation. New simulations underway based onFLUKA
andMCNPX show that an 60-cm-thick outer shield of liquid scintillator loaded with 0.5% Gd could efficiently detect
a majority of the spallation events that produce neutrons that could interact with the dark matter detectors inside the
shield [92]. The efficient detection of such events would simultaneously provide a cross check on the background
simulations and higher-statistics measure of the in situ background compared with the multiple-scatter technique.

Although depth is the simplest and most certain solution to the fast-neutron background, several more ideas have been
suggested that could make sites shallower than about 4000 m.w.e. acceptable. Sophisticated shielding and vetoing
could reduce this background by one to two orders of magnitude. A thick (1–2 m) scintillator active veto around the
detectors could tag high-energy neutrons as they penetrateinward. If instrumented as a Gd-loaded neutron multiplicity
meter, as described above, a thickness of 60–80cm would provide an order of magnitude reduction as predicted by
simulations done forCDMS II [93]. In addition the cavern rock, or an outer heavy passive shield, could be instrumented
with additional veto detectors in order to catch some part ofthe shower associated with the initial muon. Work is also
ongoing to investigate very thick passive high-purity water shields, which could economically shield both gammas and
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neutrons. Simulations of a 4-m-thick water shield have shown a factor of 20 reduction in the recoil rate due to punch-
through neutron compared with the conventional external-lead internal-polyethylene shield configuration referred to
in Figure 9 [94].

Increased granularity in detectors will enhance the multiple-scatter rejection rate (primarily for inner detector atsome
cost of fiducial mass), but would nonetheless serve as a crosscheck on systematics. Along these lines, measuring
the neutron multiplicity in the energy range 100 keV–10 MeV in which neutrons produceWIMP-like recoils would
also be helpful for benchmarking Monte Carlo simulations and quantifying systematic errors. The focus here has
been on the depth-related fast-neutron background, but it is worth noting that its suppression through the use of depth
and passive and/or active shielding must be accompanied by sufficient control of neutron sources from radioactivity.
Primary sources are (α,n) processes from uranium- and thorium-series contamination and from spontaneous fission
of uranium. Sufficiently thick moderator will adequately shield (α,n) sources from the rock (e.g., 1–2-m thick), but
radiopurity of internal components will require continuedvigilance. With regard to fission, one source that has been
considered is from Pb shielding. G. Heusser and co-workers have observed upper limits of 20 ppt gram of uranium
per gram of lead, with no positive measurements in any samples counted [95]. That level would produce on the order
if 1 event per ton-year in a dark matter detector, but as notedby Heusser it may be that the chemistry of these heavy
metals tends to make lead intrinsically pure.

In summary, next generation experiments, for example, those aiming for sensitivity in the10−45 cm2 range, could be
performed at depths on the order of 4000 m.w.e. As experiments aim for greater sensitivity, such as those that could
occur in the first suite ofDUSEL experiments, depths of 6000m.w.e. become very desirable. Ultimately, we find
that these depths should be available at a laboratory that isaimed at a long-duration program. Surely, ifWIMPs are
discovered with cross sections anywhere in the range between present limits and10−46 cm2, aDUSEL at 6000 m.w.e.
would be needed, possibly along with active vetoes, to studyWIMPs with greater statistics and without contamination
from depth-related backgrounds.

8.2 Materials Handling

Underground storage, handling, and fabrication facilities are important for dark matter experiments. Materials exposed
to cosmic rays at the Earth’s surface become radioactive through inelastic interactions, primarily due to air-shower
neutrons. Even a 30-day exposure of an initially-pure sample of a medium-mass element will result in long-lived
low-energy activity due to3H at several tens of disintegrations per kg per year. Other radionuclides within 10–20 mass
units lighter than the target are also produced, with specific activities in some cases a hundred times higher than for
3H. These effects have been seen in experiments, and computerprograms such asCOSMOandSIGMA have provided
estimates of the activation and decay processes, in reasonable agreement with measurements.

The activation rate is reduced by a factor∼100 at a depth of just 10–20 m.w.e. Current and past experiments have
taken effective measures to shield or limit exposure times for critical components during processing at the surface. Un-
derground storage for several halflives of the most criticalradionuclides is also effective at reducing this background.
However, the event rates to be sought in next-generation dark matter experiments are predicted by Supersymmetry
to be exceedingly low, of order 10 per ton per year. Even experiments proposed to have excellent electron-recoil
rejection efficiency would benefit significantly from eliminating the cosmogenics by conducting final purification and
fabrication of critical components at least in a shallow underground facility.

Exposure to radon during these final operations must also be limited, to avoid deposition or incorporation of radon
or its daughters (including long-lived210Pb) into critical components. The extent of radon mitigation required will
be highly dependent on the particular experiment and component involved. It would be prudent to provide at least a
section of the facility with radon significantly below the surface air level of∼16 Bq/m3. The Borexino collaboration
built an assembly area at Princeton with radon concentration reduced by a factor of 100 from the local surface level.

Based on these considerations,DUSEL should have a 100–200m2 clean shop and storage area at least 20 m.w.e. un-
derground, equipped with radon and particulate mitigationinfrastructure. Cleaning stations, chemical hoods, and
machine tools should be present from opening day. More materials processing equipment such as copper electroform-
ing and semiconductor crystal growing may be incorporated as specific experiments are staged in, so provision for
these capabilities brings potential benefits.
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8.3 Facility Needs and Space

Most dark matter experiments have modest-size footprints (typically 200 m2, or less) for the actual experiment. Addi-
tional space is of course needed for staging,DAQ, and control rooms. The environments must be able to be maintained
at modest, e.g., Class 1000 clean room conditions with some mitigation of radon backgrounds. These needs are similar
to those of double-beta decay experiments.

An initial suite of experiments would therefore be accommodated by one or two full-size caverns of 2000 cubic meters
each, plus an additional 50 square meters for equipment staging, storage, control rooms, andR&D projects. The
lab should also have the capability for further expansions that can be excavated for new experiments with minimal
disruption to existing projects.

The more specific basic facility needs of dark matter experiments are itemized below:

• The space required to set up any one of the next-generation detectors is typically a 10 m high by 200 m2 footprint.
Several such experiments would be mounted in a single large hall. The hall should have crane(s) up to 30 tons
with trained riggers available by arrangement. An overall muon veto and possibly water shielding for the
entire hall would be cost-effective solutions to the needs of nearly all experiments. Water shields for individual
experiments might require a sunk-in pit of 10-m depth below floor level to accommodate the shield base section.

• Experimental rooms must be cleanable, that is, upgradeableto clean-room standards during initial assembly and
later operations. Soft-wall clean room systems are available commercially to allow flexible configuration of the
underground space.

• Radon underground is a critical problem for sensitive low energy experiments. Experimental requirements are
typically specified in the 10–100mBq/m3 range. Either each experiment will need its own radon-scrubbing
micro-environment, or the entire cavern wall should be sealed and the hall continuously supplied with air
scrubbed to reduce radon levels. Some experiments require constant radon purging for experiment interiors,
so a compressor system for old-air storage and filtration, orcover gas derived from a liquid-nitrogen boiloff
source will be required.

• Each experiment requires additional underground laboratory floor space to house data acquisition and experi-
ment control rooms of typically 50 m2.

• Because stability during extended periods of data-taking is critical, temperature control to at least office-building
standards (±1◦C) is necessary in all underground areas.

• Average power requirements per experiment are typically 100 kW or less, with peak power no more than a factor
of two higher. Critical subsystems such as control computers and cryogenics will require uninterruptable power
supplies which should be provided by the individual experiments.

• The typical size of underground experimental crews during installation and commissioning is 10–20 people.
Standard running requires only two to four people accessingexperimental areas, with larger numbers during up-
grade periods and run commissioning. The principal laboratory requirement is 24/7 access in case of emergency.
During commissioning and detector start-up sequences, extended access (e.g., two shifts per day) is beneficial.
None of the experiments as envisioned requires continuous underground presence.

• Provision for radioactive calibration sources is requiredfor all experiments, including the necessary licensing,
safety, and storage protocols.

• A 100–200m2 clean shop, staging and storage area should be provided at least 20 m.w.e. underground, equipped
with radon and particulate mitigation infrastructure. This facility could be shared with non-dark matter users.
Cleaning stations, chemical hoods, and machine tools should be present from opening day. More elaborate ma-
terials processing equipment such as copper electroforming and Ge detector re-processing could benefit nearly
all dark matter experiments. The infrastructure should allow these to be incorporated as specific experiments
are staged in.
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• A surface facility with laboratory space and experiment control rooms providing computer links to the under-
ground laboratory is also needed. This would amount to roughly 30 m2 per experiment.

Special facility needs (experiment specific): Each experiment has specific additional needs not discussed above, but
which are listed in the Infrastructure Table. These tend to fall into groupings as follows.

• Large inventories of liquid cryogen are used in several experiments. Safety systems must be included to min-
imize the possibility of large accidental releases, and to mitigate the oxygen-deficiency hazard which could
develop with accidental release or accumulation of boiloffgas. Oxygen deficiency alarms, standby ventilation,
and/or personnel escape/refuge facilities would be needed.

• EURECA is calling for a helium liquefier located near their experiment. This would have to be engineered to
allow safe operation or shutdown in case of a power outage.

• As presently configured, theTPCexperiments use flammable, toxic gases for the negative-iondrift. The detectors
themselves operate below atmospheric pressure so catastrophic releases are unlikely. However, appropriate
procedures must be in place for safe storage, transfer and disposal of these materials.COUPPpresently plans to
use several hundred kilograms or more of a non-flammable heavy liquid (CF3I) which is much less toxic than
the CS2 negative-ion capture agent but is used under several bar pressure. Release prevention and management
systems will still be required for this material.

• Water shielding tanks are planned forCOUPP, CLEAN, and possibly others. These require personnel safeguards
to prevent injury and equipment damage.

• Power outages of duration longer than 30 minutes can be disruptive for cryogenic experiments that plan to use
cryocoolers, such asXENON and SuperCDMS. Since battery-type Uninterruptable Power SuppliesUPSsare not
practical for long outages, the provision for experiment-run backup generators may be called for.

9 International Context

As we have discussed in section 8.1, it is best to perform darkmatter experiments as deep as possible. For ton-
scale experiments, the neutron background can be eliminated at depths of 6000 m.w.e., or at shallower depths if
adequate active shielding is used and systematic effects are well studied. Several current efforts that are building
or performing experiments are developing next-generationplans. These plans were quite evident through the recent
series of workshops held atSNOLAB, the site of the Sudbury Neutrino Observatory, orSNO.

SNOLAB is located at a depth of 6000 m.w.e. and, using funds providedby the Canadian Fund for Innovation, is
constructing a laboratory to house a suite of four to six new experiments as early as 2007. A call to the physics
community for Letters of Interest yielded 18 responses, 7 ofwhich were for experiments aimed at detectingWIMPs.
While it is unlikely that all 18 of these experiments will be funded and built (e.g., some represent similar competing
technologies), it is likely that the capacity ofSNOLAB will be exceeded by approximately a factor of two, though such
an estimate is inherently uncertain and depends on many factors.

In addition toSNOLAB, other major laboratories that will host next-generation dark matter experiments include Boulby,
Gran Sasso, Modane, Canfranc, and Kamioka. None of these is as deep asSNOLAB, but several dark matter experi-
ments which are already operating at these locations are likely to remain there, to take advantage of the existing infras-
tructure and proximity to home institutions. For example, the Italian-ledWARP and the Swiss-ledArDM liquid-argon
experiments (which follow on the developments forICARUS) and the Japanese-ledXMASS liquid-xenon experiment,
are likely to remain at Gran Sasso, Canfranc and Kamioka, respectively. Strong candidates forDUSEL from the in-
ternational community are theUK program and Eureca, in addition of course to the variousUS efforts and others
discussed in Section 7, includingCLEAN, Coupp,DEAP, DRIFT, SuperCDMS, XENON, andZEPLIN. Given the strong
demand for deep space for dark matter experiments, the larger scale of “next-next” generation experiments timed for,
say, a 2012 opening ofDUSEL, and the capacity limitations ofSNOLAB, it is clear that a robust and exciting dark
matter program will be part of the initialDUSEL program.
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10 Summary and Outlook

In this report we have described the broad and compelling range of astrophysical and cosmological evidence that
defines the dark matter problem, and theWIMP hypothesis, which offers a solution rooted in applying fundamental
physics to the dynamics of the early universe. TheWIMP hypothesis is being vigorously pursued, with a steady march
of sensitivity improvements coming both from astrophysical searches and laboratory efforts. The connections between
these approaches are profound and will reveal new information from physics at the smallest scales to the origin and
workings of the entire universe.

Direct searches forWIMP dark matter require sensitive detectors that have immunityto electromagnetic backgrounds,
and are located in deep underground laboratories to reduce the flux from fast cosmic-ray-muon-induced neutrons
which is a common background to all detection methods. WithUS leadership in dark matter searches and detector
R&D, a new national laboratory will lay the foundation of technical support and facilities for the next generation of
scientists and experiments in this field, and act as magnet for international cooperation and continuedUS leadership.

The requirements of depth, space and technical support for the laboratory are fairly generic, regardless of the approach.
Current experiments and upgraded versions that run within the next few years will probe cross sections on the10−45–
10−44 cm2 scale, where depths of 3000–4000m.w.e. are sufficient to suppress the neutron background. On the longer
term, greater depths on the 5000–6000 level are desirable ascross sections down to10−46 cm2 are probed, and of
course, ifWIMPs are discovered then building up a statistical sample free of neutron backgrounds will be essential to
extracting model parameters and providing a robust solution to the dark matter problem.

While most of the detector technologies are of comparable physical scale, i.e., the various liquid and solid-state
detector media under consideration have comparable density, a notable exception is the low-pressure gaseous detectors.
These detectors are very likely to play a critical role in establishing the galactic origin of a signal if the remaining
challenges of background rejection and low threshold can bedemonstrated, and so it is important to design the lab
with this capability in mind. For example, for aWIMP-nucleon cross section of10−43 cm2 (just below the present
limit [23]), 100 modules of the size and pressure currently being investigated by theDRIFT-II collaboration (1 m3 at
40 torr CS2 [96]) would require a two-year exposure [90] to get the approximately 200 events [97] required to establish
the signal’s galactic origin. While detector improvementsare under investigation, a simple scaling for the bottom of
theMSSM region at10−46 cm2 would require a 100,000m3 detector volume. If a factor of 10 reduction in required
volume is achieved (e.g., higher pressure operation, more detailed track reconstruction, etc.) then an experimental hall
of (50 m)3 could accommodate the experiment.

Because theWIMP-nucleon cross section is unknown, it is impossible to make adefinitive statement as to the ulti-
mate requirements for a directional gaseous dark matter detector, or any other device, for that matter. What is clear,
however, is that whatever confidence one gives to specific theoretical considerations, the foregoing discussion clearly
indicates the high scientific priority of, broad intellectual interest in, and expanding technical capabilities for increas-
ing the ultimate reach of direct searches forWIMP dark matter. Upcoming experiments will advance into the low-mass
Supersymmetric region and explore the most favored models in a complementary way to theLHC, and on a similar
time scale. The combination of astrophysical searches and accelerator experiments stands to check the consistency of
the solution to the dark matter problem and provide powerfulconstraints on the model parameters. Knowledge of the
particle properties from laboratory measurements will help to isolate and reduce the astrophysical uncertainties, which
will allow a more complete picture of the galactic halo and could eventually differentiate between, say, infall versus
isothermal models of galaxy formation.

The scientific landscape of dark matter, which spans particle physics, astrophysics and cosmology, is very rich and
interwoven. Exploring this exciting program following an initial detection will need many observables and hence a
range of capabilities for follow-up experiments includingdifferent targets to sort out the mass and coupling of the
WIMP, and directional sensitivity to confirm its galactic originand open the age ofWIMP astronomy. Clearly, this
broad and fascinating program is ideally suited to the multi-decade span ofDUSEL.
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